ASYMMETRIC DIELS-ALDER REACTION PROMOTED BY A CHIRAL TITANIUM REAGENT

Koichi NARASAKA, Masayuki INOUE, and Naoko OKADA

Department of Chemistry, Faculty of Science,
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

The asymmetric Diels-Alder reaction between prochiral dienes and dienophiles prepared from α,β -unsaturated acids and 1,3-oxazolidin-2-one proceeds by the use of a chiral alkoxy titanium(IV) to give the corresponding cycloadducts in high enantioselectivity.

Due to the preeminent utility of the Diels-Alder reaction in organic synthesis, considerable attention has been given to the exploration of intermolecular asymmetric Diels-Alder reactions. Recent progress in this area has led to the development of various highly selective asymmetric Diels-Alder reactions by employing chiral dienes or dienophiles. On the other hand, little work has been done on asymmetric Diels-Alder reactions promoted by chiral Lewis acids and this area remains as an unexplored field.

In this communication, we describe a highly enantioselective Diels-Alder reaction between prochiral dienes and dienophiles utilizing a chiral alkoxy titanium(IV).

Firstly, α , β -unsaturated acids of dienophiles were converted to the corresponding 3-acyl-1,3-oxazolidin-2-ones $\underline{1}$ based on the consideration that such bidentate dienophiles would form rigid complexes with a chiral Lewis acid to result in a good level of π -facial selectivity during the cycloaddition process. As a chiral Lewis acid, cyclic dialkoxy dichloro titaniums(IV) $\underline{2}$ were chosen and prepared in situ from various chiral 1,2- or 1,4-diols $\underline{3}$ and dichlorodiisopropoxytitanium(IV) according to the alkoxy exchange method. $\underline{3}$

The reaction of 3-crotonoyl-1,3-oxazolidin-2-one ($\underline{1a}$) and cyclopentadiene was examined in toluene in the presence of an equimolar amount of various chiral alkoxy titaniums $\underline{2}$ (Table 1). When chiral 1,1,4,4-tetraphenylbutanetetraol derivatives $\underline{3b}^3$) and $\underline{3c}$ were used as chiral auxiliaries, the endo adduct $\underline{4}$ was obtained in good enantioselectivity. Especially, the titanium reagent derived from 2,3-0-phenylethylidene derivative $\underline{3c}^4$) was found to promote the asymmetric cycloaddition reaction in a selective manner, and the optical purity of the adduct $\underline{4a}$ reached up to 75% ee. Moreover, by the use of 2 molar amounts of the titanium reagent $\underline{2c}$, the product $\underline{4a}$ was obtained in 92% ee.

1110 Chemistry Letters, 1986

Since a high level of enantioselectivity was achieved by the employment of the chiral titanium reagent $\underline{2c}$, the asymmetric Diels-Alder reaction of various 1,3-oxazolidin-2-one derivatives of α , β -unsaturated acids and cyclopentadiene was studied in the presence of 2 molar amounts of the titanium reagent $\underline{2c}$ and the results are listed in Table 2. Excepting the acryloyl derivative $\underline{1b}$, various dienophiles $\underline{1}$ were found to react with cyclopentadiene in a highly selective manner to afford the corresponding endo adducts $\underline{4}$ in high optical purity (80-92% ee).

$$Me \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} + \bigcirc \xrightarrow{(R^*) \xrightarrow{Cl} Cl} \xrightarrow{Cl} 2 \xrightarrow{CON 0} + \bigcirc \xrightarrow{Me} CON 0$$

$$1a \xrightarrow{1a} 4a \xrightarrow{5a}$$

Table 1. Effect of Chiral Diols 3 in the Reaction of 1a with Cyclopentadiene

Diol 3		Yield/%a)	endo:exo (<u>4a:5a</u>)	ee/% of <u>4</u> b)	Abs.config.
Me Phin OH	<u>3a</u>	73	86 : 14	2	2R,3S
Ph Ph Me O OH Me O OH Ph Ph		88	93 : 7	55	25,3R
Ph Ph Ph OH Me OH Ph Ph	<u>3c</u>	quant.	86 : 14	75	2S,3R
Ph Ph		₉₃ c)	90 : 10	92	2 s, 3R

Molar ratio of dienophile : titanium reagent = 1 : 1.

- a) Total yield of the endo and \exp isomers which were separated by column chromatography on silica gel.
- b) The product was esterified to the benzyl ester by Evans's procedure, ⁵⁾ and the optical purity was determined by the optical rotation. ^{1d)}
- c) Molar ratio of dienophile : titanium reagent = 1 : 2.

$$R \xrightarrow{\text{Ph}} O + \bigcirc Ph \xrightarrow{\text{Ph}} O + \bigcirc Ti \xrightarrow{\text{Cl}} R + \bigcirc Ph \xrightarrow{\text{Ph}} CON O + \bigcirc \frac{1}{5} R$$

Table 2. Asymmetric Diels-Alder Reaction of \underline{l} with Cyclopentadiene

Dienophi R	les	React.temp / °C	Yield/% ^{a)}	endo:exo	ee/% of <u>4</u>	$[\alpha]_D$ /° Abs.config.
Me	<u>la</u>	-15	93	90 : 10	92 ^{b)}	-191 2S,3R
					b.\	(c 3.6,CCl ₄)
Н	<u>lb</u>	-78	69	86 : 14	38 ^{b)}	- 65 2S
Dh	1 -	0	97	92 : 8	81 ^c)	(c 1.5,CHCl ₃) -143
Ph	<u>lc</u>	0	97	92: 8	81	
n-Pr	1d	-15	82	90:10	₉₀ d)	(c 1.2,CCl ₄) -158
H-FI	<u>1u</u>	-15	02	90 : 10	90	(c 2.0,CCl ₄)
Me✓	le	r.t.	77	92 : 8	82 ^{d)}	-142
~ `	10	1		, . · ·	-	(c 3.5,CCl ₄)

Molar ratio of dienophile : titanium reagent = 1 : 2.

All the products gave satisfactory ¹H NMR and IR spectra.

- a) Total yield of endo and exo isomers. These isomers were separated by column chromatography on silica gel.
- b) The products were converted to the corresponding benzyl esters by Evans's procedure,⁵⁾ and the absolute configuration and the optical purity were determined by the optical rotation.^{1d)}
- c) The product was reduced to an alcohol with lithium aluminum hydride, and the optical purity was determined by $^{19}{\rm F}$ NMR analysis of the corresponding chiral MTPA ester. $^{6)}$
- d) The products were reduced to alcohols with lithium aluminum hydride, and the optical purity was determined by HPLC analysis of the corresponding chiral Pirkle's carbamates. (Waters #Polasil, hexane: ethyl acetate = 30:1)

Furthermore, high enantioselectivity was observed by the application of the chiral titanium reagent $\underline{2c}$ to the reaction of $\underline{1a}$ and an acyclic diene such as isoprene, and the cycloadduct $\underline{6}$ (the absolute configuration was not determined) was obtained in 92% ee.

Thus, according to the present methods utilizing the chiral alkoxy titanium(IV), it is noted that high enantioselectivity is achieved in the asymmetric Diels-Alder reaction between prochiral dienes and dienophiles.

The authors are grateful to Professor Teruaki Mukaiyama for valuable discussion during this work. The present work was partially supported by a Grant-in-Aid for Scientific Research No. 60119007 from the Ministry of Education, Science and Culture.

References

- 1) a) L. A. Paquette, "Asymmetric Synthesis," ed by J. D. Morrison, Academic Press, Inc., New York (1984), Vol.3, Chap.4; b) W. Oppolzer, Angew. Chem., Int. Ed. Engl., 23, 876 (1984); c) W. Oppolzer, C. Chapuis, and G. Bernardinelli, Helv. Chim. Acta, 67, 1397 (1984); d) D. A. Evans, K. T. Chapman, and J. Bisaha, J. Am. Chem. Soc., 106, 4261 (1984); e) B. M. Trost, D. O'Krongly, and J. L. Belletire, J. Am. Chem. Soc., 102, 7595 (1980).
- 2) S. Hashimoto, N. Komeshima, and K. Koga, J. Chem. Soc., Chem. Commun., 1979, 437; M. Bednarski, C. Maring, and S. Danishefsky, Tetrahedron Lett., 24, 3451 (1983).
- 3) D. Seebach, "Modern Synthetic Methods," ed by R. Scheffold, John Wiley & Sons, Inc., New York (1983), Vol.3, Chap.4.
- 4) The diol 3c was prepared from L-(+)-dimethyl tartrate. The reaction of the tartrate with 1,1-dimethoxy-1-phenylethane and a cat. amount of p-toluenesulfonic acid gave the 2,3-0-phenylethylidene derivative, which was converted to the diol 3c by treatment with excess phenylmagnesium bromide. The diol 3c was purified by column chromatography on silica gel (hexane: ethyl acetate = 5:1), and recrystalization of 3c from a mixture of hexane and 2-propanol gave the complex of 3c with 2-propanol as a white crystal (mp 111-114°C). Then, by the azeotropic removal of 2-propanol with benzene was obtained the diol 3c as a white amorphous solid. The enantiomeric isomer of the diol 3c was not observed by HPLC analysis (Chiralpak OT(+), Daicel Chemical Industries; hexane: 2-propanol = 7:1).
- 5) D. A. Evans, M. D. Ennis, and D. J. Mathre, J. Am. Chem. Soc., <u>104</u>, 1737 (1982).
- 6) J. A. Dale, D. L. Dull, and H. S. Mosher, J. Org. Chem., 34, 2543 (1969).
- 7) W. H. Pirkle and M. S. Hoekstra, J. Org. Chem., <u>39</u>, 3904 (1974).

(Received April 19, 1986)